
LATBL Scanning
Efficiency improvement

Sat, Aug 3, 2002

Local applications are designed to add features to the system operation without having
to be installed as part of the linked system code. This flexibility permits use of a
common version of system code in the front-ends of different projects even though
particular projects have specific needs that can be accommodated via this local
application mechanism. The nonvolatile Local Applications Table (LATBL) is the
catalog of local applications that are invoked at least every cycle. In the PowerPC
systems, access to nonvolatile memory is relatively slow, so special attention might be
paid to improving the operational use of this table. This note describes a scheme for
doing this in a way that can save many references to nonvolatile memory.

The basic idea behind the scheme is to keep a volatile (fast) memory copy of the
nonvolatile table. The wrinkle is, of course, that we need to permit modification of the
nonvolatile table contents during system operation, so that such modifications are
effective not only immediately but also used the next time the system is reset.

The basic means of modification of the LATBL is via “Page E” on the little consoles or
via emulation of same. The name of the page application is PAGELAPP, referring to local
application parameters, since a common need for modifications of LATBL entries is to
change parameter values that are housed therein. Such modifications of LATBL entries
are done using settings to listype 74, which currently targets the nonvolatile entries via
generic memory access.

Suppose a copy of LATBL is created at reset time to be used during system operation.
Suppose further that in order to preserve the ability to modify the table contents online,
read access to this listype references this online copy of the LATBL, but setting access to
this listype references both the nonvolatile table and the volatile table. Viewing the
situation as presented on the Page E display, one would see the volatile (active) table
entries shown, but changes to those entries would not only be recorded in the active
table entries viewed, but they would also be stored in the nonvolatile entries.

Let us review the 32-byte LATBL entry layout:
Field Size Meaning
codesx 1 CODES table index of related LA
lastAct 1 Record of current LA enable bit status
elapsed 1 Elapsed execution time in 0.5 ms units
callCnt 1 Counter for cycle calls to show activity
cName 4 Program name, with LOOP, found in CODES table
smPtr 4 Ptr to static memory used by program while enabled
enable 2 Enabling Bit number
params 18 Nine parameters for uses definable by the LA

When performing a setting, some of these fields would be better ignored; for example, it
would not be a good idea to target the smPtr field, which is a pointer to allocated
memory written to when the LA is initialized. We are fortunate in the present system of
getting away with this, because the Page E logic always has the latest copy of the entry

available when making a setting, so that a setting does not destroy the smPtr field; it
merely overwrites it with the same value that it had. For a setting that is not made in
such an interactive environment, however, this kind of setting could be dangerous.

The only fields of the online LATBL entry that can be changed are the cName and the 10
parameter values, including the enable Bit number. These are also the only fields that
need be written to the nonvolatile LATBL entry. The other fields are used during
operations only. The new setting type routine that implements this logic would target
both the online and nonvolatile copies of the LATBL entries affected.

There is a potential pitfall in modifying the cName field, which would change the
program that is related to the LATBL entry. Such a modification should not be made
while the entry is active. It may be better to refuse a setting that would change the
program name while the enable bit is set. This is another benefit of the new scheme. In a
similar vein, one may also disallow modifying the enable Bit number while the program
is enabled. But this is occasionally useful during configuration if the state of the Bit
number currently in use is not modifiable, so it may be as well to expect the user
exercise due care here. Altering the other parameters should be ok, even if it may also
require some care.

In order to implement the scheme sketched here, the system code that scans the entries
in the LATBL should be reviewed, so that it references the online copy of the table
entries, except for the initialization code of InzLOOP, of course, which will need to
create the online copy of LATBL. There are only a small number of places in the system
code where the LATBL is referenced, so this should not be difficult. There may have to
be a new global variable that houses the pointer to the online copy of LATBL, or some
particular memory could be set aside for such use, or both. There is not the same need
for access to the online copy for printing out a record across all nodes in a project, say.
Saving the LATBL contents for use in later system restoration can be done via access to
the (nonvolatile) memory that is found in the system table directory. (The online copy
need not be saved for such a purpose.)

The special listype used to access LATBL entries will need a read type routine that
accesses the online copy of LATBL. The associated set type routine will have to target
both the nonvolatile and online copies of LATBL, but with care. Not only will the
scheme save time by reducing the number of accesses to nonvolatile memory, it may
also improve its robustness vis-a-vis setting modifications to LATBL entries.

Implementation details
There are two listypes that refer to LATBL entries. The first one provides simple

access to LATBL entries. This listype needs separate read-type and set-type routines to
support the behavior described above. The read-type accesses the online copy of
LATBL; the set-type routine writes to both the online and nonvolatile copies of the
LATBL, with special care.

The second listype used for LATBL access is listype 86. It allows a request to be made
for the LATBL entries that use a given name, which is included in the specified ident
when the request is made. The reply data to such a request identifies all of the LATBL
entries that use that name. Recall that multiple instances can be defined for use with the

same local application program, resulting in the same program being invoked multiple
times but with different parameters and different static memory context. The only
change to the special read-type routine used here is to reference the online copy of the
LATBL rather than the nonvolatile copy.

In the LocAppl module, the LocAppl routine is changed so that it references the online
copy of LATBL. (This is the change that is designed to save some time in the PowerPC
version of the system by reducing the number of accesses to nonvolatile memory.) One
of the fields in the online LATBL entry holds the measured elapsed time of execution
every cycle that it is invoked during processing of the Data Access Table. This has until
now been done in units of 0.5 ms, which is rather coarse, as most LAs execute in much
less time than that. To improve the resolution, we can change the units to 0.1 ms. Since
the microsecond counter is used to derive this number, it will be much more stable as
displayed on Page E than the previous value that was derived from the difference of
two readings of an asynchronous 0.5 ms counter. One might argue for measuring
elapsed time with even finer resolution than 0.1 ms, but the elapsed time result must fit
in an 8-bit field. Using 0.1 ms, this places a limitation of 25.5 ms on the maximum value
recordable, which is probably enough for even very heavy LA work. If a measured
elapsed time turns out to be larger than this, limit the value stored to 0xFF. To support
this change in units for the elapsed time byte field, a change to the PAGELAPP program
must be made, in which it somehow recognizes which is the appropriate units in use by
the target node. (Not all nodes are updated to the latest system code at once.)

Although unrelated to this LATBL upgrade, another change can be made that will be
helpful in the PowerPC version of the system code. In many diagnostic records
maintained by the system, or by helpful local applications, there is a need to register the
time-of-day at which something happened. This time stamp is in BCD, for convenience
in viewing in hexadecimal, using 7 bytes to show the time in yr-mo-da-hr-mn-sc-cy
to the 15 Hz cycle within the second, and using the final byte of the total 8-byte
structure as the binary number of 0.5 ms units within the current 15 Hz (or 10 Hz) cycle.
In the PowerPC, this value is obtained from the digital PMC board, which
unfortunately has a rather slow access time. Since this is used very heavily by the
system, when all uses are considered, it would be better to eliminate the need for
obtaining this time from that hardware. By capturing the base reference time at the start
of 15 Hz cycle execution in more accurate units, we will have a basis for providing a
new verison of the TIMECYCL routine that returns the value of time since the beginning
of the current cycle (but still in 0.5 ms units so that its range can cover the entire cycle).
All that is required is to capture some 4-byte high resolution time value, such as from
the Time Base register, and to record it somewhere globally so it can be accessed by the
TIMECYCL function.

Modules affected
Defines. Use the area of memory from 0x1800–0x27FF to hold up to 4K bytes

for the online copy of LATBL. The usual size of this table is 2K bytes, for 64 entries.

InzSys. Define two 4-byte global variables. CYCLETB (at offset –96) holds the
microsecond counter at the start of the current cycle. LATABLE (at offset –92) holds the
address of the online copy of LATBL. If zero, there is no online copy.

IntsFP. Capture the microsecond counter reading into the new global variable
CYCLETB at the start of the CYCLE routine.

LTT. The entry for listype 74 is changed to specify read-type 28 and set-type 39.

ReadType. The read-type 86 is changed to access the online copy of LATBL. The
read-type 28 routine is new and merely copies from the online copy of LATBL, rather
than the nonvolatile LATBL. This is important for PAGELAPP, since it would not
otherwise display signs of visible activity, such as changing counters.

SetType. Add a new reference to set-type 39 routine SETLATBL in LocAppl.

LocAppl. Change InzLOOP so that it creates the online copy of LATBL, recording
its base address in the new global variable LATABLE. Change LocAppl so it uses the
online copy of LATBL for its scan; also, measure the execution time of each LA in units
of 0.1 ms, rather than 0.5 ms. Measure the total time for the LATBL processing in
microsecond units to be recorded in the Data Access Table entry. (Currently this
diagnostic uses 0.5 ms units.) The new set-type 39 routine carefully copies portions of
the up-to-32-byte setting data into both the online and nonvolatile versions of the
LATBL.

PAGELAPP. Obtain a copy of the LATABLE global variable. If it is nonzero, consider
that the elapsed time units for LAs are 0.1 ms; otherwise, assume 0.5 ms. This only
makes sense considering that these two changes are being made at the same time:
support an online LATBL, and measure elapsed time in 0.1 ms units.

As a timing aid, if LATBL has an odd number of entries, do not use online copy.

